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Abstract. We derive optimal well-posedness results and explicit representations of solutions in terms of

special functions for the linearized version of the equation

(∗)

Dβt u(n, t) = −(−∆d)αu(n, t) + f(n− ct, u(n, t)), t > 0, 0 < α, β < 1, n ∈ Z,

u(n, 0) = ϕ(n), n ∈ Z,

for some constant c ≥ 0, where Dβt denotes the Caputo fractional derivative in time of order β and (−∆d)α

denotes the discrete fractional Laplacian of order α ∈ (0, 1]. We also prove a comparison principle. A

special case of this equation is the discrete Fisher-KPP equation with and without delay. We show that if
0 ≤ ϕ(n) ≤ γ for every n ∈ Z, and the function f(x, ·) is concave on [0, γ], f(x, s) is non-negative for every

x ∈ R, s ∈ [0, γ], and satisfies

f(x, 0) = 0 and f(x, γ) ≤ 0, ∀ x ∈ R,

for some γ > 0, then the system (∗) has a nonnegative unique solution u satisfying 0 ≤ u(n, t) ≤ γ for every

n ∈ Z and t ≥ 0. Our results includes cubic nonlinearities and incorporates new results for the discrete

Newell-Whitehead-Segel equation. We use Lévy stable processes as well as Mittag-Leffler, Wright and
modified Bessel functions to describe the solutions of the linear lattice model, providing a useful framework

for further study. For the nonlinear model, we use a generalization of the upper-lower solution method for
reaction-diffusion equations in order to prove existence and uniqueness of solutions.

1. Introduction

The nonlinear partial differential equation of diffusion type:

ut(x, t) = D∆u(x, t) + ru(x, t)(1− u(x, t)), t > 0, x ∈ R, (1.1)

where D > 0 is the diffusion coefficient and r ∈ R, is known as the Fisher-KPP equation and was originally
studied by R. Fisher in the paper [20] in connection with population dynamics. Let 0 < α < 1 and consider
the fractional Laplacian (−∆)α. Then the above equation is the limiting case of the fractional diffusion
equation:

ut(x, t) = −D(−∆)αu(x, t) + ru(x, t)− ru2(x, t), t > 0, x ∈ R. (1.2)

The latter equation has been investigated by Stan and Vázquez [40]. They analyzed the propagation prop-
erties of nonnegative and bounded solutions of this problem in the spirit of the Fisher-KPP theory. These
authors do in fact study a more general model, namely the porous media equation

ut(x, t) = −(−∆)αum(x, t) + f(u(x, t)), t > 0, x ∈ R, (1.3)

where m is a positive parameter. The Fisher equation (1.2) corresponds to the case m = 1 in (1.3).
Equations of the above type have met with increasing interest due to their relevance in such areas as

spatial ecology, physics, chemistry, biology and the emerging area of global warming (see e.g. [2, 25]).
Additional areas of application of fractional diffusion models appear in the recent book [36] by Meerschaert
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and Sikorskii where the general theory is presented from a probabilistic standpoint. The following discrete
version of Fisher’s equation

ut(n, t) = ∆du(n, t) + ru(n, t)− u2(n, t), t > 0, n ∈ Z,
where (∆d)v(n, t) = v(n + 1, t) − 2v(n, t) + v(n − 1, t) denotes the one step central difference (in the space
variable), was first studied by Zinner, Harris and Hudson [45] in the context of traveling waves. The version
with a retarded term, i.e.

ut(n, t) = ∆du(n, t) + r(n− ct)u(n, t)− u2(n, t), t > 0, n ∈ Z,
was recently studied by Hu and Li [25] in terms of long term behavior of solutions.

On the other hand, from numerical analysis, it is well known that semi-discretizations is a useful way
of looking at the general behavior of evolutionary partial differential equations. For instance, in the nu-
merical optimization of low eigenvalues of the Laplacian [3] or controllability [4]. One step semi-discrete
one-dimensional equations naturally appear in some fields of Physics [5, 6] and in fracture mechanics and
biology [11], [35, Section 5]. For instance, the model

ut(n, t) = ∆du(n, t)−A sinu(n, t) + F, n ∈ Z, t > 0,

where A and F are positive parameters, has been investigated in fracture mechanics and is related to the
Frenkel-Kontorova model [19] for dislocations, while in neurobiology it is a qualitative model for propagation
of an impulse along a myelinated nerve axon [7]. Cardiac cells provide another suitable biological context
[27] of application. Another interesting example is provided by the discrete Nagumo equation

ut(n, t) = ρ∆du(n, t) + u(n, t)(u(n, t)− a)(1− u(n, t)), n ∈ Z, t > 0, (1.4)

where ρ > 0 and 0 < a < 1
2 . The discrete Nagumo equation has become a challenging object of study because

it exhibits differences with the continuous model that has led to new insights regarding e.g. the formation of
spiral waves [26]. Studies about the existence of traveling wave solutions for sufficiently large ρ was proved
by Zinner [44]. However, in the fractional case, the discrete Nagumo equation has only been analyzed very
recently from a numerical point of view [31, 10].

In view of this context, an obvious question that arises naturally is the following: Can one establish
optimal well posedness of the general model

ut(n, t) = −(−∆d)
αu(n, t) + f(n− ct, u(n, t)), t > 0, n ∈ Z, (1.5)

where 0 < α ≤ 1? Here (−∆d)
α represents the discrete fractional Laplacian of order α defined by

(−∆d)
αf(n) =

1

Γ(−α)

∫ ∞
0

(et∆df(n)− f(n))
dt

t1+α
, (1.6)

for each 0 < α < 1, where

et∆df(n) :=
∑
m∈Z

e−2tIn−m(2t)f(m), f ∈ l2(Z) (1.7)

represents the heat semigroup in the discrete setting. Here In denotes the modified Bessel function. We
observe that the discrete fractional Laplacian was introduced in [15, Section 3] in connection with harmonic
analysis. The link with the above representation is proved in [16, Theorem 2]. A comparison between the
fractional discrete Laplacian and the discretized continuous fractional Laplacian is carried out in [17]. The
discrete fractional Laplacian is a nonlocal operator on Z.

Our aim in this paper is to provide a positive answer to the question raised above. Our results concerning
equation (1.5) will be obtained viewing it as a particular case of a more general study on conditions for
a nonlinear term f in order to have optimal well-posedness of solutions for semi-discretizations of two-
parameters equation

Dβt u(x, t) = −(−∆)αu(x, t) + f(x, u(x, t)), 0 < α ≤ 1, t > 0, x ∈ R, (1.8)
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where 0 < β ≤ 1 and Dβt denotes the Caputo fractional derivative in time of order β > 0.
We note that the formulation (1.8) includes counterparts of well-known fractional partial differential

equations. For example, the choice β = 0 corresponds to the fractional Keller-Segel model, which was
studied for the first time by Escudero in the reference [18], and then in the paper [30] to include memory
effects in time (that is, β > 0). See also the article [8] where the authors studied the blow up of solutions.
The discrete model (1.8) for β ∈ {1, 2} was recently studied in the paper [32].

We provide new insights on the analytical structure of the solutions, highlighting the role of two special
distributions: The Lévy probability density function and the Wright function.

Our first contribution in this paper is the description of explicit solutions for the linear nonhomogeneous
equation

Dβt u(n, t) = −(−∆d)
αu(n, t) + g(n, t), 0 < α ≤ 1, 0 < β ≤ 1, t ≥ 0, n ∈ Z, (1.9)

We then consider the associated nonlinear problem{
Dβt u(n, t) = −(−∆d)

αu(n, t) + f(n− ct, u(n, t)), 0 < α ≤ 1, 0 < β ≤ 1, t ≥ 0, n ∈ Z,
u(n, 0) = ϕ(n), n ∈ Z,

(1.10)

for some constant c ≥ 0. We show that if 0 ≤ ϕ(n) ≤ γ for every n ∈ Z, and the function f(x, ·) is concave
on [0, γ], f(x, s) is non-negative for every x ∈ R, s ∈ [0, γ], and satisfies

f(x, 0) = 0 and f(x, γ) ≤ 0, ∀ x ∈ R,

for some γ > 0, then the system (1.10) has a nonnegative unique solution u satisfying 0 ≤ u(n, t) ≤ γ for
every n ∈ Z and t ≥ 0.

The paper is organized as follows. In Section 2, we present some preliminary material on the special
functions that will be used for the representation of solutions. These include the densities of the Lévy stable
processes (ft,α(·)) (with 0 < α < 1, t > 0), the Mittag-Leffler functions (Eα,β) which are fundamental objects
in fractional calculus and the Wright functions (Φγ(·)) (also known as M- Wright functions). We also need
some identities involving Bessel and modified Bessel functions In(·), n ∈ Z. The special functions described
in Section 2 are used in Section 3 to derive explicit representations for the solutions of the nonhomogeneous
problem (1.9). In particular, for 0 < α ≤ 1 and β = 1, we show that (1.9) admits the solution

u(n, t) = e−(−∆d)αtu(n, 0) +

∫ t

0

e−(−∆d)α(t−s)g(n, s)ds

=
∑
m∈Z

[ ∫ ∞
0

In−m(2λ)e−2λft,α(λ)dλ

]
ϕ(m)

+
∑
m∈Z

∫ ∞
0

In−m(2λ)e−2λ

(∫ t

0

ft−s,α(λ)g(m, s)ds

)
dλ

where Tαt := e−(−∆d)αt is a uniformly continuous Markovovian one-parameter semigroup in the space
`2(Z;H) where H is a Hilbert space. This complements a recent result in [16] where it was proved that
this semigroup is only strongly continuous, and generalizes [25, Corollary 2.1] (see also [25, Remark 2.6])
where the representation in terms of the modified Bessel functions was proved in case α = 1. We note that
positivity is important in this context in view of the application areas. The optimal well-posedness of the
nonlinear problem is studied in Section 4, where we prove our main result on optimal well-posedness of the
nonlinear model (1.10). This generalizes a recent result due to Hu and Li [25, Theorem 3.1]. We finish this
work with the analysis of optimal wellposedness for the fractional discrete Fisher and Newell-Whitehead-
Segel equations. This includes equations with delay r(x). More precisely, we prove that if r : R → R is
continuous, non-decreasing, bounded and piecewise continuously differentiable satisfying 0 < r(∞) <∞ and
0 ≤ ϕ(n) ≤ r(∞) then the system

Dβt u(n, t) = −(−∆d)
αu(n, t) + r(n− ct)u(n, t)− u2(n, t), 0 < α ≤ 1, 0 < β ≤ 1, t ≥ 0, n ∈ Z,
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with initial condition u(n, 0) = ϕ(n) has a unique continuous solution 0 ≤ u(n, t) ≤ r(∞). This result is new
even in case 0 < α < 1 and β = 1. A similar results holds for the fractional discrete Newell- Whitehead-Segel
equation

Dβt u(n, t) = −(−∆d)
αu(n, t) + u(n, t)[r(n− ct)− u2(n, t)], 0 < α ≤ 1, 0 < β ≤ 1, t ≥ 0, n ∈ Z.

It is remarkable that this result is new even in the integer case β = α = 1. Moreover, the comparison principle
holds for both systems (see Corollaries 4.3 and 4.4).

2. Preliminaries

In this section we introduce some notations and give some known results as they are needed throughout
the article.

Let (−∆)α be the fractional Laplacian of order 0 < α ≤ 1 (see e.g. [9] and references therein). We recall
from [15, Section 3] (see also [16]) that the discrete counterpart of the fractional Laplacian is defined for
0 < α < 1 as follows:

(−∆d)
αf(n) :=

∑
k∈Z

Kα(n− k)f(k), n ∈ Z, f ∈ `2(Z), (2.1)

where

Kα(n) :=
1

2π

∫ π

−π
(4 sin2(θ/2))

α
e−inθ dθ =

(−1)nΓ(2α+ 1)

Γ(1 + α+ n)Γ(1 + α− n)
, n ∈ Z. (2.2)

We refer to [16, Remark 1] for more details. We note that the kernel Kα defined as the expression in the
second equality in (2.2) has also appeared very recently [31, Formula (9)] in connection with a successful
numerical method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion model. See also
Tarasov [41, 42] for other interesting approach. Also, it is remarkable that this definition coincides with the
fractional centered difference defined by Ortigueira [38] for approximating the Riesz fractional derivative in
the case 0 < α ≤ 1. This method was proved to be O(h2) accurate in [12, Section 2].

We observe that in the border case α = 1 we have that

K1(n) :=
1

2π

∫ π

−π
4 sin2(θ/2)e−inθ dθ =

2

π

∫ π

−π
sin2(θ/2) cos(nθ) dθ =


−1 if n = −1

2 if n = 0

−1 if n = 1

0 otherwise,

so that

∆df(n) = f(n+ 1)− 2f(n) + f(n− 1) n ∈ Z,
which is consistent with the definition given by several authors. We also mention that the infinite sum in
(2.1) shows that (−∆d)

α is a nonlocal operator for 0 < α < 1. It is interesting to note that in the case
α = 1/2 the representation is particularly simple as the following example shows.

Example 2.1. The following identity holds

−(−∆)1/2f(n) =
4

π

∑
k∈Z

f(n− k)

(2k − 1)(2k + 1)
, n ∈ Z. (2.3)

Indeed, it is enough to use (2.2) and the Euler’s reflection formula Γ(z)Γ(1− z) = π
sin(πz) . This example also

shows that the definition of the fractional Laplacian with the discretization of the generator for the Poisson
semigroup in case α = 1/2 agrees with the formula (2.3).

Remark 2.2. We observe that the discrete fractional Laplacian operator (−∆d)
α is a bounded linear operator

on `p(Z, X) for any Banach space X and 1 ≤ p ≤ ∞. Indeed, by [16, p.121] we have Kα(n) ∼ C
n2α+1 (actually

this is readily verified using Raabe’s test) and hence the result follows from the estimate ‖(−∆d)
αf‖p =

‖Kα ∗ f‖p ≤ ‖Kα‖1‖f‖p.
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We also recall that for a given sequence f = (f(n))n∈Z ∈ `2(Z), the discrete Fourier transform is defined
by

FZ(f)(θ) =
∑
n∈Z

f(n)einθ =
∑
n∈Z

f(n)zn ≡ f̂(z), θ ∈ T, z = eiθ,

where T ≡ R/(2πZ) is the one-dimensional torus, that we identify with the interval [−π, π].
The inverse discrete Fourier transform is obtained for a given function ϕ by the formula

F−1
Z (ϕ)(n) =

1

2π

∫ π

−π
ϕ(θ)e−inθ dθ, n ∈ Z.

Therefore

f(n) =
1

2π

∫ π

−π
FZ(f)(θ)e−inθ dθ =

1

2πi

∫
|z|=1

zn−1f̂(z)dz, n ∈ Z.

It is easy to verify that

FZ(f ∗ g) = FZ(f)FZ(g),

where ∗ denote the usual convolution in Z.
In what follows, we denote

J(z) := z +
1

z
− 2, z ∈ C \ {0}. (2.4)

Remark 2.3. The following properties hold:

(i) −J(z) ≥ 0 for all z ∈ C, |z| = 1.

(ii) K̂α(z) = (−J(z))α for all z ∈ C, |z| = 1.

We will need the following function, which is a probability density function related to stable Lévy processes,
defined for 0 < α < 1 by

ft,α(λ) =


1

2πi

∫ σ+i∞

σ−i∞
ezλ−tz

α

dz, σ > 0, t > 0, λ ≥ 0,

0 λ < 0,

(2.5)

where the branch of zα is taken so that Re(zα) > 0 for Re(z) > 0. This branch is single-valued in the z-plane
cut along the negative real axis. These functions were introduced by K. Yosida [43] to define fractional
powers of closed linear operators. They correspond to the density functions associated with the stable Lévy
processes in the rotational invariant case. They are also related with the Hurst exponent for fractional
Brownian motion.

Remark 2.4. The following properties hold:

(i)

∫ ∞
0

e−λaft,α(λ)dλ = e−ta
α

, t > 0, a > 0, 0 < α < 1.

(ii) ft,α(λ) ≥ 0, λ > 0, t > 0, 0 < α < 1.

(iii)

∫ ∞
0

ft,α(λ)dλ = 1, t > 0, 0 < α < 1.

(iv) ft+s,α(λ) =

∫ λ

0

ft,α(λ− µ)fs,α(µ)dµ, λ > 0, t, s > 0, 0 < α < 1.

(v)

∫ ∞
0

eλzfλ,α(t)dλ = tα−1Eα,α(ztα), z ∈ C, t > 0, 0 < α < 1.

For a proof of (i)− (iv), see [43, p.260-262]. Concerning (iv) we have to observe in [43, Proposition 1, p.260]
that by definition ft,α(λ) = 0 for λ < 0. For the interesting property (v) we refer to the recent paper [1,
Theorem 3.2 (iii)].
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In the above remark and throughout the paper, for 0 < α ≤ 1 and γ > 0, Eα,γ denotes the well-known
Mittag-Leffler function defined for every z ∈ C by

Eα,γ(z) =

∞∑
n=0

zn

Γ(αn+ γ)
.

In the literature, the notation Eα,1(z) = Eα(z), z ∈ C is frequently used.
We will also make use of the Wright function (also known as the M-Wright function) with parameter γ

which is defined by

Φγ(z) =

∞∑
n=0

(−z)n

n!Γ(−γn+ 1− γ)
=

1

2πi

∫
Γ

eγ−1eµ−zµ
γ

dµ, 0 < γ < 1,

where Γ is a contour which starts and ends at −∞ and encircles the origin once counterclockwise. It is of
interest because of its relationship with the Mittag-Leffler function.

Remark 2.5. The following properties hold:

(i) Eγ,1(z) =

∫ ∞
0

Φγ(t)eztdt, z ∈ C, 0 < γ < 1.

(ii) Φγ(t) ≥ 0, t ≥ 0.

(iii)

∫ ∞
0

Φγ(t)dt = 1.

The Wright function and the Mittag-Leffler function are related through the Laplace transform (see
Remark 2.5 (i), [21] and [22]).

More information on the Mittag-Leffler and Wright functions can be found in the references [21, 33, 34]
and the recent book [22]. Some interesting relations concerning these functions and their applications to the
abstract Cauchy problem appear in [1].

We recall some properties of the Bessel functions: the generating formula (see [23, Formula 8.511])∑
n∈Z

Jn(x)zn = e
x
2 (z− 1

z ), z ∈ C \ {0}, x ≥ 0, (2.6)

for the Bessel function Jn(x). Analogously, we have the identity∑
n∈Z

In(x)zn = e
x
2 (z+ 1

z ), z ∈ C \ {0}, x ≥ 0, (2.7)

for the modified Bessel function In(x). This function verifies, among others, the following properties

In(x) ≥ 0, n ∈ Z, x ≥ 0, (2.8)

and ∑
n∈Z

In(2x)e2x = 1. (2.9)

3. The linear case: Explicit representation of solutions

The knowledge of explicit solutions for linear equations is a critical step to understand the physical
mechanism of the phenomena described by nonlinear evolution equations. In this section, we give an explicit
representation of solutions for the following time/space fractional diffusion equation{

Dβt u(n, t) = −(−∆d)
αu(n, t) + g(n, t), 0 < α, β ≤ 1, t > 0, n ∈ Z,

u(n, 0) = ϕ(n), n ∈ Z.
(3.1)



LATTICE DYNAMICAL SYSTEMS 7

Here (−∆d)
α is the discrete fractional Laplace operator defined in (2.1) and Dβt denotes the Caputo fractional

derivative given by

Dβt v(t) =

∫ t

0

(t− s)−β

Γ(1− β)
v′(s) ds.

We adopt the following notion of solutions.

Definition 3.1. Let ϕ ∈ `2(Z) and g ∈ L1
loc([0,∞), `2(Z)) be given. A function u ∈ C([0,∞); `2(Z)) is said

to be a solution of the system (3.1) if for every n ∈ Z and t ≥ 0, we have

u(n, t) = ϕ(n)− (−∆d)
α

∫ t

0

(t− s)β−1

Γ(β)
u(n, s) ds+

∫ t

0

(t− s)β−1

Γ(β)
g(n, s) ds

= ϕ(n)−
∫ t

0

(t− s)β−1

Γ(β)
(−∆d)

αu(n, s) ds+

∫ t

0

(t− s)β−1

Γ(β)
g(n, s) ds.

Remark 3.2. We notice that since (−∆d)
α is a bounded operator on `2(Z) (by Remark 2.2), we have that

if a solution u (in the sense of Definition 3.1) exists, then u ∈ C∞([0,∞); `2(Z)) and hence, is a classical
solution if g ∈ C∞([0,∞); `2(Z)).

We observe that this remains valid if we replace the space `2(Z) with `2(Z,H) for any Hilbert space H.

For 0 < α, β < 1, we introduce the function

Gα,β(n, t) :=

∫ ∞
0

In(2λtβ/α)e−2λtβ/α
(∫ ∞

0

Φβ(s)fs,α(λ)ds

)
dλ, n ∈ Z, t ≥ 0. (3.2)

Our main result in this section is the following theorem.

Theorem 3.3. Let ϕ ∈ `∞(Z) and g : Z× R+ → C such that g(·, t) ∈ `∞(Z) and sups∈[0, t] ‖g(·, s)‖∞ <∞
for each t ≥ 0. Then the function

u(n, t) =
∑
m∈Z

Gα,β(n−m, t)ϕ(m)

+
∑
m∈Z

∫ t

0

∫ ∞
0

fλ,β(t− s)
(∫ ∞

0

In−m(2γ)e−2γfλ,α(γ) dγ

)
dλg(m, s) ds, (3.3)

solves the initial value problem (3.1).

Proof. Let us denote u(n, t) = uh(n, t) + unh(n, t) with

uh(n, t) :=
∑
m∈Z

Gα,β(n−m, t)ϕ(m),

and

unh(n, t) :=
∑
m∈Z

∫ t

0

∫ ∞
0

fλ,β(t− s)
(∫ ∞

0

In−m(2γ)e−2γfλ,α(γ) dγ

)
dλg(m, s) ds.

We first check that the series converges for ϕ ∈ `∞(Z). Indeed, we have the estimate

|uh(n, t)| =
∣∣∣∣ ∑
m∈Z

[ ∫ ∞
0

Im(2λtβ/α)e−2λtβ/α
(∫ ∞

0

Φβ(s)fs,α(λ)ds

)
dλ

]
ϕ(n−m)

∣∣∣∣
≤
∑
m∈Z

∣∣∣∣ ∫ ∞
0

Im(2λtβ/α)e−2λtβ/α
(∫ ∞

0

Φβ(s)fs,α(λ)ds

)
dλ

∣∣∣∣‖ϕ‖∞
=

∫ ∞
0

(∫ ∞
0

Φβ(s)fs,α(λ)ds

)
dλ‖ϕ‖∞ =

∫ ∞
0

(∫ ∞
0

Φβ(s)fs,α(λ)dλ

)
ds‖ϕ‖∞

=

∫ ∞
0

Φβ(s)

(∫ ∞
0

fs,α(λ)dλ

)
ds‖ϕ‖∞ = ‖ϕ‖∞,
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where we have used (2.8), (2.9), Fubini’s theorem, Remark 2.4 (ii)-(iii) and Remark 2.5 (ii)-(iii). For the
second term, we have the following estimate:

|unh(n, t)| =

∣∣∣∣∣∑
m∈Z

∫ t

0

∫ ∞
0

fλ,β(t− s)
(∫ ∞

0

In−m(2γ)e−2γfλ,α(γ) dγ

)
dλg(m, s) ds

∣∣∣∣∣
≤
∑
m∈Z

∣∣∣∣∫ t

0

∫ ∞
0

fλ,β(t− s)
(∫ ∞

0

In−m(2γ)e−2γfλ,α(γ) dγ

)
dλ

∣∣∣∣ ‖g(·, s)‖∞ds

=

∫ t

0

∫ ∞
0

fλ,β(t− s)

(∫ ∞
0

∑
m∈Z

In−m(2γ)e−2γfλ,α(γ) dγ

)
dλ‖g(·, s)‖∞ds

=

∫ t

0

∫ ∞
0

fλ,β(t− s)
(∫ ∞

0

fλ,α(γ) dγ

)
dλ‖g(·, s)‖∞ds

=

∫ t

0

∫ ∞
0

fλ,β(t− s)dλ‖g(·, s)‖∞ds

=

∫ t

0

(t− s)β−1Eβ,β(0)‖g(·, s)‖∞ ds

≤
∫ t

0

(t− s)β−1Eβ,β(0) ds sup
s∈[0, t]

‖g(·, s)‖∞

≤ tβ

Γ(β + 1)
sup
s∈[0, t]

‖g(·, s)‖∞,

where we have used Remark 2.4 (iii)-(v) and (2.8). This proves the claim.
Next, taking the discrete Fourier transform of (3.1) and using Remark 2.3 (ii) we get that{

Dβt û(z, t) = −(−J(z))αû(z, t) + ĝ(z, t),

û(z, 0) = ϕ̂(z).
(3.4)

The unique solution of (3.4) is given by means of the Mittag-Leffler functions as follows

û(z, t) = Eβ,1(−(−J(z))αtβ)ϕ̂(z) +

∫ t

0

(t− s)β−1Eβ,β(−(−J(z))α(t− s)β)ĝ(z, s) ds.

By Remark 2.5 (i) and Remark 2.4 (v) we obtain that

û(z, t) =

∫ ∞
0

e−(−J(z))αtβsΦβ(s)dsϕ̂(z) +

∫ t

0

∫ ∞
0

e−λ(−J(z))αfλ,β(t− s) dλĝ(z, s) ds.

Note that −J(z) > 0 for |z| = 1 and hence we can insert the Lévy function (see Remark 2.4 (i)) in the above
integrals to get

û(z, t) =

∫ ∞
0

∫ ∞
0

eλJ(z)tβ/αfs,α(λ)Φβ(s) dλ ds ϕ̂(z)

+

∫ t

0

∫ ∞
0

(∫ ∞
0

eγJ(z)fλ,α(γ) dγ

)
fλ,β(t− s) dλĝ(z, s) ds

=

∫ ∞
0

eλ(z+ 1
z )tβ/αe−2λtβ/α

∫ ∞
0

fs,α(λ)Φβ(s) ds dλ ϕ̂(z)

+

∫ t

0

∫ ∞
0

fλ,β(t− s)
(∫ ∞

0

eγ(z+ 1
z )e−2γfλ,α(γ) dγ

)
dλĝ(z, s) ds,
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where in the last equality we have applied Fubini’s theorem. Inserting the generating formula (2.7) for the
modified Bessel function, we get that

û(z, t) =
∑
m∈Z

[ ∫ ∞
0

Im(2λtβ/α)e−2λtβ/α
(∫ ∞

0

fs,α(λ)Φβ(s) ds

)
dλ

]
zmϕ̂(z)

+
∑
m∈Z

∫ t

0

∫ ∞
0

fλ,β(t− s)
(∫ ∞

0

Im(2γ)e−2γfλ,α(γ) dγ

)
dλzmĝ(z, s) ds.

Inverting the Fourier transform we get the expression (3.3) and the proof is finished. �

We now discuss several special cases as corollaries of Theorem 3.3.

3.1. The heat equation. This corresponds to the case (α, β) = (1, 1). We first consider the discretization
in space of the one-dimensional heat equation with initial condition{

vt(n, t) = ∆dv(n, t), t ≥ 0, n ∈ Z,
v(n, 0) = ϕ(n), n ∈ Z,

(3.5)

where we recall that ∆dv(n, t) = v(n+1, t)−2v(n, t)+v(n−1, t) is the central difference. This equation and
its solution has been recently deeply studied in connection with the discrete fractional Laplacian by Ciaurri
et al. in [15] where they have obtained the solution (also called fundamental solution, or Green function)

v(n, t) =
∑
m∈Z

e−2tIn−m(2t)ϕ(m), n ∈ Z, t ≥ 0,

where ϕ ∈ `∞(Z) and In denotes the modified Bessel function. In addition, one analysis for the following
operator, called the heat semigroup of the discrete Laplacian

Wtf(n) :=
∑
m∈Z

e−2tIn−m(2t)f(m) (3.6)

and its properties, is performed. We also use the notation Wtf(n) = et∆df(n), f ∈ `2(Z). In particular, in
[15, Proposition 1] it was proved that Wt is a Markov semigroup. We refer to [16] for the connection of this
semigroup with continuous fractional processes.

We derive the following complementary result.

Corollary 3.4. Let g : Z×R+ → C be given and assume that g(·, t) ∈ `∞(Z) and sups∈[0, t] ‖g(·, s)‖∞ <∞
for each t ≥ 0. Then the non homogeneous heat equation{

vt(n, t) = ∆dv(n, t) + g(n, t), t ≥ 0, n ∈ Z,
v(n, 0) = ϕ(n), n ∈ Z,

(3.7)

admits a unique solution in the space `2(Z) given explicitly by

v(n, t) =
∑
m∈Z

e−2tIn−m(2t)ϕ(m) +
∑
m∈Z

(∫ t

0

e−2(t−s)In−m(2(t− s))g(m, s)ds

)
. (3.8)

Proof. Note that the operator ∆d is bounded in the space `2(Z). Hence, the operator ∆d generates the
uniformly continuous semigroup (e∆dt)t≥0 on `2(Z), and consequently the general solution of the first order
equation (3.7) in the variable t can be explicitly written by Duhamel’s formula

v(n, t) = e∆dtv(n, 0) +

∫ t

0

e∆d(t−s)g(n, s)ds.

Since the solution for the homogeneous problem (3.5) is given by the semigroup Wt, and it has the same
generator ∆d as the semigroup (e∆dt)t≥0, it follows from the uniqueness of solutions that the equality
e∆dt = Wt holds for every t ≥ 0. The conclusion follows. �
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Remark 3.5. We observe the following situations.

(a) As observed in the proof of the above corollary, the semigroup Wt has a bounded generator. In
consequence, the semigroup is not only strongly continuous, as was directly proved in [15], but even
more, namely, it is uniformly continuous.

(b) The family Wt also defines a uniformly continuous semigroup on `p(Z) for every 1 ≤ p ≤ ∞ with
the same generator. In view of this, the above results remain valid if we replace `2(Z) with `p(Z)
(1 ≤ p ≤ ∞).

Remark 3.6. We notice that prior the functions ft,γ and Φγ are defined for 0 < γ < 1, but by [33, 34] the
definition can be extended to γ = 1 so that ft,1 = δt, Φ1(t) = δt, that it, the δ-Dirac measure concentrated at
t. Hence, taking the limit of the identity (3.3) as α, β ↑ 1 we get that

lim
β↑1

lim
α↑1

∑
m∈Z

∫ ∞
0

In−m(2λtβ/α)e−2λtβ/α
(∫ ∞

0

Φβ(s)fs,α(λ)ds

)
ϕ(m)dλ

+ lim
β↑1

lim
α↑1

∑
m∈Z

∫ t

0

∫ ∞
0

fλ,β(t− s)
(∫ ∞

0

In−m(2γ)e−2γfλ,α(γ) dγ

)
dλg(m, s) ds

=
∑
m∈Z

e−2tIn−m(2t)ϕ(m) +
∑
m∈Z

(∫ t

0

e−2(t−s)In−m(2(t− s))g(m, s)ds

)
,

which is exactly the identity (3.8).

3.2. The case 0 < α < 1 and β = 1. In this subsection, we analyze the system{
ut(n, t) = −(−∆d)

αu(n, t) + g(n, t), 0 < α < 1, t > 0, n ∈ Z,

u(n, 0) = ϕ(n), n ∈ Z.
(3.9)

Before we give the explicit representation of solutions of the system (3.9), we construct the semigroup
generated by the operator −(−∆)α.

For each g ∈ `2(Z) we define the operator

Tαt g(n) :=
∑
m∈Z

[ ∫ ∞
0

In−m(2λ)e−2λft,α(λ)dλ

]
g(m), n ∈ Z, t > 0. (3.10)

Proposition 3.7. For all 0 < α < 1 and g ∈ `2(Z) we have that Tαt g ∈ `2(Z) and

‖Tαt g‖2 ≤ ‖g‖2.

Proof. Let g ∈ `2(Z) be given. By Minkowski’s integral inequality, we have

‖Tαt g‖2 =

(∑
n∈Z
|Tαt g(n)|2

) 1
2

=

(∑
n∈Z

∣∣∣∣ ∑
m∈Z

[ ∫ ∞
0

Im(2λ)e−2λft,α(λ)dλ

]
g(n−m)

∣∣∣∣2) 1
2

≤
∑
m∈Z

(∑
n∈Z

∣∣∣∣[ ∫ ∞
0

Im(2λ)e−2λft,α(λ)dλ

]
g(n−m)

∣∣∣∣2) 1
2

=
∑
m∈Z

[ ∫ ∞
0

Im(2λ)e−2λft,α(λ)dλ

](∑
n∈Z

∣∣∣∣g(n−m)

∣∣∣∣2) 1
2

=
∑
m∈Z

[ ∫ ∞
0

Im(2λ)e−2λft,α(λ)dλ

]
‖g‖2.
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By the positivity of the modified Bessel and Lévy functions, (2.7), and Remark 2.4 (iii) we obtain that

‖Tαt g‖2 ≤
∫ ∞

0

∑
m∈Z

Im(2λ)e−2λft,α(λ)dλ‖g‖2 =

∫ ∞
0

ft,α(λ)dλ‖g‖2 = ‖g‖2,

proving the assertions. �

We are able to prove the following result that extends [15, Proposition 1] to the range 0 < α < 1.

Theorem 3.8. For each 0 < α < 1 the one parameter family {Tαt }t≥0 defines a uniformly continuous
Markov semigroup on `2(Z).

Proof. We first prove the semigroup property. In fact, by definition we have

Tαt (Tαs g)(n) =
∑
m∈Z

(∫ ∞
0

In−m(2λ)e−2λft,α(λ)dλ

)
(Tαs g)(m)

=
∑
m∈Z

(∫ ∞
0

In−m(2λ)e−2λft,α(λ)dλ

)∑
j∈Z

(∫ ∞
0

Im−j(2µ)e−2µfs,α(µ)dµ

)
g(j)

=
∑
j∈Z

∑
m∈Z

∫ ∞
0

∫ ∞
0

In−m(2λ)e−2λft,α(λ)Im−j(2µ)e−2µfs,α(µ)dλdµ g(j).

Applying Neumann’s identity

In(t1 + t2) =
∑
m∈Z

In−m(t1)Im(t2), n ∈ Z,

we obtain, after a change of variable

Tαt (Tαs g)(n) =
∑
j∈Z

∫ ∞
0

∫ ∞
0

In−j(2(λ+ µ))e−2(λ+µ)ft,α(λ)fs,α(µ)dλdµ g(j)

=
∑
j∈Z

∫ ∞
0

[ ∫ ∞
0

In−j(2(λ+ µ))e−2(λ+µ)ft,α(µ)dµ

]
fs,α(λ)dλ g(j)

=
∑
j∈Z

∫ ∞
0

[ ∫ ∞
λ

In−j(2ϕ)e−2ϕft,α(ϕ− λ)dϕ

]
fs,α(λ)dλ g(j).

Using Fubini’s theorem and Remark 2.4 (iv), we get that

Tαt (Tαs g)(n) =
∑
j∈Z

∫ ∞
0

[ ∫ ϕ

0

In−j(2ϕ)e−2ϕft,α(ϕ− λ)fs,α(λ)dλ

]
dϕ g(j)

=
∑
j∈Z

∫ ∞
0

In−j(2ϕ)e−2ϕ

[ ∫ ϕ

0

ft,α(ϕ− λ)fs,α(λ)dλ

]
dϕ g(j)

=
∑
j∈Z

∫ ∞
0

In−j(2ϕ)e−2ϕft+s,α(ϕ)dϕ g(j),

proving the semigroup property Tαt (Tαs g)(n) = Tt+sg(n). Moreover, for 1(n) ≡ 1 we obtain by (2.7) and
Remark 2.4 (iii) that

Tαt 1(n) = 1(n), n ∈ Z.

On the other hand, since In(x) ≥ 0 for all x ≥ 0, n ∈ Z (see e.g. [15, formula (28)]) it follows from Remark
2.4 (ii) that the semigroup is positive. It remains to show that

Tα0 f(n) = f(n), n ∈ Z. (3.11)
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Indeed, we follow an idea due to Yosida [43, p.263-364] in order to handle ft,α(λ). We have by [43, p.263,
Formula (17)] with θα := π

1+α that

ft,α(λ) =
1

π

∫ ∞
0

e(λr−trα) cos θα sin[(λr − trα) sin θα + θα]dr.

Inserting this formula in the definition of Tαt we obtain

Tαt f(n) =
1

π

∑
m∈Z

[ ∫ ∞
0

∫ ∞
0

In−m(2λ)e−2λe(λr−trα) cos θα sin[(λr − trα) sin θα + θα]drdλ

]
f(m).

We made the change of variables

s = t1/αr and p = λt−1/α,

to obtain

Tαt f(n) =
1

π

∑
m∈Z

[ ∫ ∞
0

In−m(pt1/α)e−2pt1/α

∫ ∞
0

e(ps−sα) cos θα sin[(ps− sα) sin θα + θα]dsdp

]
f(m).

Now, we observe that the second integral on the right is exactly πf1,α(p). Therefore,

Tαt f(n) =
∑
m∈Z

[ ∫ ∞
0

In−m(pt1/α)e−2pt1/αf1,α(p)dp

]
f(m).

Taking into account that I0(0) = 1 and Ik(0) = 0 for k 6= 0 we obtain (3.11). Finally, we prove that Tαt
is uniformly continuous. Indeed, the semigroup Tαt satisfies Tαt g = −(−∆d)

αTαt g for all g ∈ `2(Z) and
consequently the generator of Tαt is the operator A = −(−∆d)

α which is bounded on `2(Z) (see Remark
2.2). The proof is finished. �

As one immediate consequence of Proposition 3.7 and Theorem 3.8 we obtain the following result.

Corollary 3.9. Assume that g(·, t) ∈ `∞(Z) and sups∈[0, t] ‖g(·, s)‖∞ < ∞ for each t ≥ 0. Then for every

0 < α < 1 and ϕ ∈ `∞(Z) the function

u(n, t) =
∑
m∈Z

[ ∫ ∞
0

In−m(2λ)e−2λft,α(λ)dλ

]
ϕ(m)

+
∑
m∈Z

∫ ∞
0

In−m(2λ)e−2λ

(∫ t

0

ft−s,α(λ)g(m, s)ds

)
dλ, n ∈ Z, t ≥ 0, (3.12)

solves the initial value problem (3.9).

Proof. By Remark 2.2 the operator −(−∆d)
α is bounded on `2(Z). Consequently, we have that the semigroup

(e−(−∆d)αt)t≥0 exists and the solution of the inhomogeneous problem can be given by Duhamel’s formula

u(n, t) = e−(−∆d)αtu(n, 0) +

∫ t

0

e−(−∆d)α(t−s)g(n, s)ds.

Since the generator of the semigroup (Tαt )t≥0 is the same operator −(−∆d)
α we conclude that Tαt =

e−(−∆d)αt for every t ≥ 0 and the result follows. �
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Remark 3.10. Using the argument in Remark 3.6 we have that for every g ∈ `2(Z), n ∈ Z and t > 0,

lim
α↑1

Tαt g(n) = lim
α↑1

∑
m∈Z

[ ∫ ∞
0

In−m(2λ)e−2λft,α(λ)dλ

]
g(m)

=
∑
m∈Z

[ ∫ ∞
0

In−m(2λ)e−2λ lim
α↑1

ft,α(λ)dλ

]
g(m)

=
∑
m∈Z

In−m(2t)e−2tg(m) = Wtg(n).

3.3. The case 0 < β < 1 and α = 1. In this section, we study the solutions for the system{
Dβt u(n, t) = ∆du(n, t) + g(n, t), 0 < α < 1, t > 0, n ∈ Z,

u(n, 0) = ϕ(n), n ∈ Z.
(3.13)

We have the following explicit representation of solutions to the system (3.13).

Theorem 3.11. Assume that g(·, t) ∈ `∞(Z) and sups∈[0, t] ‖g(·, s)‖∞ < ∞ for each t ≥ 0. Then for every

ϕ ∈ `∞(Z) the function

u(n, t) =
∑
m∈Z

[ ∫ ∞
0

In−m(2stβ)e−2stβΦβ(s)ds

]
ϕ(m)

+
∑
m∈Z

∫ t

0

(∫ ∞
0

In−m(2λ)e−2λfλ,β(t− s) dλ
)
g(m, s) ds (3.14)

solves the initial value problem (3.13).

Proof. We take the Fourier transform in the variable n of the system (3.13) and we obtain the following
equation in the variable t {

Dβt û(z, t) = J(z)û(z, t) + ĝ(z, t), t > 0,

û(z, 0) = ϕ̂(z),
(3.15)

where we recall that J(z) = z + 1
z − 2. It is well-known that the system (3.15) has the unique solution

û(z, t) = Eβ(J(z)tβ)ϕ̂(z) +

∫ t

0

(t− s)β−1Eβ,β(J(z)(t− s)β)ĝ(z, s) ds,

where Eβ,1 and Eβ,β denote the Mittag Leffler functions. Using Remark 2.5 (i) we obtain that

û(z, t) =

∫ ∞
0

eJ(z)tβsΦβ(s)dsϕ̂(z) +

∫ t

0

(∫ ∞
0

eλJ(z)fλ,β(t− s) dλ
)
ĝ(z, s) ds

=

∫ ∞
0

e(z+ 1
z )tβse−2tβsΦβ(s)dsϕ̂(z) +

∫ t

0

(∫ ∞
0

eλ(z+ 1
z )e−2λfλ,β(t− s) dλ

)
ĝ(z, s) ds.

Inserting the generating formula (2.7) for the modified Bessel function in the last two integrals, we get

û(z, t) =
∑
m∈Z

(∫ ∞
0

Φβ(s)Im(2tβs)e−2tβsds

)
zmϕ̂(z)

+
∑
m∈Z

∫ t

0

(∫ ∞
0

Im(2λ)e−2λfλ,β(t− s) dλ
)
zmĝ(z, s) ds

and hence the result follows by inversion of the Fourier transform. �
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4. Well Posedness of the nonlinear problem

In this section we establish the well posedness of the nonlinear model given by{
Dβt u(n, t) = −(−∆d)

αu(n, t) + f(n− ct, u(n, t)), t > 0, 0 < α, β < 1, n ∈ Z,

u(n, 0) = ϕ(n), n ∈ Z,
(4.1)

for some constant c ≥ 0. For each γ > 0 we define the set

Lγ := {u ∈ `∞(Z) : 0 ≤ u(n) ≤ γ for all n ∈ Z}.

The following result is one of the main tools in order to establish the well-posedness of the model (4.1).

Lemma 4.1. Let γ > 0. Suppose that f : R × [0,∞) → R is measurable, the restriction of f(x, ·) to [0, γ]
belongs to C1[0, γ], is concave on [0, γ] and satisfies f(x, 0) = 0 for every x ∈ R. Let ρ > 0 be such that

ρ+ ∂sf(x, γ) ≥ 0, ∀ x ∈ R. (4.2)

Then the function F : R × [0, γ] → R defined by F (x, s) := ρs + f(x, s) is non-decreasing (in the second
variable) and non-negative for every x ∈ R.

Proof. Let x ∈ R be fixed and 0 ≤ s1 ≤ s2 ≤ γ. Since f(x, ·)|[0,γ] is differentiable, it follows from the Mean
Value Theorem that there exists c > 0 with s1 ≤ c ≤ s2 such that ∂sf(x, c)(s2 − s1) = f(x, s2) − f(x, s1).
Moreover, since f(x, ·)|[0,γ] is concave we have that ∂sf(x, ·) is non-increasing on [0, γ]. Therefore ∂sf(x, c) ≥
∂sf(x, γ) and the condition (4.2) implies that

0 ≤ (ρ+ ∂sf(x, γ))(s2 − s1) ≤ (ρ+ ∂sf(x, c))(s2 − s1)

= ρ(s2 − s1) + ∂sf(x, c)(s2 − s1) = ρ(s2 − s1) + f(x, s2)− f(x, s1)

= F (x, s2)− F (x, s1).

We have shown that F (x, ·) is non-decreasing on [0, γ]. Since F (x, 0) = 0 + f(x, 0) = 0, we also have that
F (x, s) ≥ 0 for all s ∈ [0, γ] and x ∈ R, and this proves the lemma. �

We observe that using the techniques of resolvent families (see e.g. [28, 29]) we have the following situation.
Let ρ > 0 be fixed and (e−((−∆d)α−ρ)t)t≥0 be the semigroup generated by the operator −(−∆d)

α − ρ on
`2(Z). For every ϕ ∈ `2(Z) we define the operators

Eβ,1(−((−∆d)
α + ρ)tβ)ϕ(n) := t−β

∫ ∞
0

Φβ(t−βτ)e−((−∆d)α+ρ)τϕ(n) dτ

= t−β
∫ ∞

0

Φβ(t−βτ)e−(−∆d)ατe−ρτϕ(n) dτ, (4.3)

and

tβ−1Eβ,β(−((−∆d)
α + ρ)tβ)ϕ(n) := βt−β−1

∫ ∞
0

τΦβ(t−βτ)e−((−∆d)α+ρ)τϕ(n) dτ

= βt−β−1

∫ ∞
0

τΦβ(t−βτ)e−(−∆d)ατe−ρτϕ(n) dτ. (4.4)

Then a solution of the nonlinear system (4.1) is a fixed point of the equation

u(n, t) =Eβ,1(−((−∆d)
α + ρ)tβ)ϕ(n)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs, u(n, s))ds (4.5)

where we recall that F (x, ξ) := ρξ+ f(x, ξ). In the notation of [28, 29], Eβ,1(−((−∆d)
α + ρ)tβ) = S0

α(t) and
tβ−1Eβ,β(−((−∆d)

α + ρ)tβ)ϕ = P 0
α(t), where in each case the generator is A = −(−∆d)

α − ρI.
The following theorem is the first main result of this section.
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Theorem 4.2. (Well-posedness) Suppose that f : R × [0,∞) → R is measurable, the restriction of f(x, ·)
to [0, γ] belongs to C1[0, γ], is concave on [0, γ] for every x ∈ R and satisfies

f(x, 0) = 0 and f(x, γ) ≤ 0, (4.6)

for all x ∈ R and for some γ > 0, and ∂sf(x, 0) is a nondecreasing function of x. Let ϕ ∈ Lγ . Then there
exists a unique solution u ∈ C(R+,Lγ) to the problem (4.5), and hence a unique solution to the nonlinear
system (4.1).

Proof. Define

Kβ(u)(n, t) :=Eβ,1(−((−∆d)
α + ρ)tβ)ϕ(n)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs, u(n, s))ds,

where F (x, ξ) = ρξ + f(x, ξ) and ρ > 0 is such that (4.2) holds.
We first consider the sequence uk(n, t) given by u0(n, t) = 0 and uk+1 = Kβ(uk) for k ∈ N ∪ {0}. Since

F (x, 0) = f(x, 0) = 0 for every x ∈ R we have that

u1(n, t) =Kβ(u0)(n, t)

=Eβ,1(−((−∆d)
α + ρ)tβ)ϕ(n)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs, 0) ds

=Eβ,1(−((−∆d)
α + ρ)tβ)ϕ(n) ≥ 0,

where we have used the fact that Eβ,1(−((−∆d)
α + ρ)tβ) is a positive operator. Moreover, since F (x, s) is

non negative for every x ∈ R and 0 ≤ s ≤ γ, we have that

u1(n, t) =Eβ,1(−((−∆d)
α + ρ)tβ)ϕ(n)

≤Eβ,1(−((−∆d)
α + ρ)tβ)ϕ(n)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs, u1(n, s)) ds = u2(n, t).

Proceeding by induction we easily get that

0 = u0(n, t) ≤ u1(n, t) ≤ u2(n, t) ≤ · · · ≤ uk(n, t) ≤ · · ·

On the other hand, define u0(n, t) = γ and uk+1 = K(uk) for k ∈ N ∪ {0}. Then

u1(n, t) =Eβ,1(−((−∆d)
α + ρ)tβ)ϕ(n)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs, u0(n, s)) ds

=Eβ,1(−((−∆d)
α + ρ)tβ)ϕ(n)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs, γ) ds. (4.7)

Using (4.3) and the fact that the semigroup (e−(−∆d)αt)t≥0 generated by the operator−(−∆d)
α is Markovian,

we get that

Eβ,1(−((−∆d)
α + ρ)tβ)ϕ(n) = t−β

∫ ∞
0

Φβ(t−βτ)e−(−∆d)ατe−ρτϕ(n) dτ

≤ t−β
∫ ∞

0

Φβ(t−βτ)e−ρτϕ(n) dτ = Eβ,1(−ρtβ)ϕ(n). (4.8)
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Similarly, it follows from (4.4) that for every non-negative ψ, we have that

tβ−1Eβ,β(−(−∆d)
α + ρ)tβ)ψ(n) = βt−β−1

∫ ∞
0

τΦβ(t−βτ)e−(−∆d)ατe−ρτψ(n) dτ

≤ βt−β−1

∫ ∞
0

τΦβ(t−βτ)e−ρτψ(n) dτ

= tβ−1Eβ,β(−ρtβ)ψ(n). (4.9)

Using (4.8), (4.9) and the fact that 0 ≤ F (x, γ) ≤ ργ (this follows from the fact that by hypothesis f(x, γ) ≤
0) we get from (4.7) that

u1(n, t) ≤ Eβ,1(−ρtβ)ϕ(n) +

∫ t

0

(t− s)β−1Eβ,β(−ρ(t− s)β)F (n− cs, γ) ds

= Eβ,1(−ρtβ)ϕ(n) + ργ

∫ t

0

sβ−1Eβ,β(−ρsβ) ds. (4.10)

Since ϕ(n) ≤ γ, Eβ,1(0) = 1 and

d

dt
Eβ,1(−ρtβ) = −ρtβ−1Eβ,β(−ρtβ),

it follows from (4.10) by integrating that

u1(n, t) ≤ Eβ,1(−ρtβ)γ − Eβ,1(−ρtβ)γ + γ = γ. (4.11)

Moreover, by Lemma 4.1, the inequality (4.11) implies that F (n− cs, u1) ≤ F (n− cs, γ). Hence,

u1(n, t) =Eβ,1(−((−∆d)
α + ρ)tβ)ϕ(n)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs, γ) ds

≥Eβ,1(−((−∆d)
α + ρ)tβ)ϕ(n)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs, u1(n, s)) ds.

We have shown that u1(n, t) ≥ u2(n, t). Proceeding by induction we also get that

u1(n, t) ≥ u2(n, t) ≥ · · ·uk(n, t) ≥ · · · .

We have proved the following monotonicity of the sequences uk and uk :

0 ≤ u1(n, t) ≤ u2(n, t) ≤ ... ≤ u2(n, t) ≤ u1(n, t) ≤ γ.

It is clear that uk(n, t) → u(n, t) and uk(n, t) → u(n, t) as k → ∞. Moreover u, u ∈ C(R+,Lγ) and are
solutions of (4.5).

It remains to prove uniqueness. In fact, an application of the Mean Value Theorem gives

0 ≤ u(n, t)− u(n, t)

=

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)[F (n− cs, u(n, s))− F (n− cs, u(n, s))]ds

=

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)∂sF (n− cs, d)(u(n, s)− u(n, s))ds,

where 0 ≤ u ≤ d ≤ u ≤ γ. Since ∂sF (n − cs, d) = ρ + ∂sf(n − cs, d) and by Lemma 4.1 we have that
∂sf(n − cs, ·) is non-increasing, we obtain that ∂sf(n − cs, γ) ≤ ∂sf(n − cs, d) ≤ ∂sf(n − cs, 0) and hence
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∂sF (n− cs, d) ≤ ∂sF (n− cs, 0). Observe that ∂sF (·, s) is nondecreasing (in the first variable). This together
with the above inequality gives

0 ≤ u(n, t)− u(n, t)

≤ ∂sF (n, 0)

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)(u(n, s)− u(n, s))ds.

Therefore,

0 ≤ sup
n

[u(n, t)− u(n, t)]

≤ ∂sF (n, 0)

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β) sup

n
[u(n, s)− u(n, s)]ds

≤ ∂sF (n, 0)

∫ t

0

(t− s)β−1Eβ,β(−ρ(t− s)β) sup
n

[u(n, s)− u(n, s)]ds,

where we have used (4.9). Therefore, using the Gronwall inequality for integral equations (see e.g. [14]) we
get that u ≡ u and the proof is finished. �

We have the following result as a corollary of the preceding theorem.

Corollary 4.3. (Comparison Principle) Assume the hypothesis in Theorem 4.2. Let u and v be two solutions
of (4.5) with initial data ϕ,ψ ∈ Lγ respectively. If ϕ(n) ≤ ψ(n) for all n ∈ Z, then u(n, t) ≤ v(n, t) for all
t ≥ 0 and n ∈ Z.

Proof. Consider the sequences uk(n, t) and vk(n, t) given by u0(n, t) = 0, v0(n, t) = 0 and uk+1 = Kβ(uk),
vk+1 = Kβ(vk), k ∈ N ∪ {0}, with initial conditions ϕ and ψ respectively. By the uniqueness of solutions
of the system (4.1) proved in Theorem 4.2, we have that uk(n, t)→ u(n, t) and vk(n, t)→ v(n, t), for every
n ∈ Z, t > 0 and k ∈ N. Since F (x, u0) = 0 for every x ∈ R, we have that

u1(n, t) =Eβ,1(−((−∆d)
α + ρ)tβ)ϕ(n)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs, u0(n, s))ds

=Eβ,1(−((−∆d)
α + ρ)tβ)ϕ(n),

and

v1(n, t) =Eβ,1(−((−∆d)
α + ρ)tβ)ψ(n)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs, v0(n, s))ds

=Eβ,1(−((−∆d)
α + ρ)tβ)ψ(n).

Since Eβ,1(−((−∆d)
α + ρ) and tβ−1Eβ,β(−((−∆d)

α + ρ)tβ) are positive operators, the hypothesis on the
initial data implies that

u1(n, t) ≤ v1(n, t) (4.12)

Now, we have

u2(n, t) =Eβ,1(−((−∆d)
α + ρ)ϕ(n)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs, u1(n, s))ds (4.13)
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and

v2(n, t) =Eβ,1(−((−∆d)
α + ρ)ψ(n)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs, v1(n, s))ds. (4.14)

Since F (x, ·) is non-decreasing for every x ∈ R (by Lemma 4.1), it follows from (4.12) that F (n− cs, u1) ≤
F (n − cs, v1) for every x ∈ R. We then conclude from equations (4.13) and (4.14) that u2(n, t) ≤ v2(n, t).
Proceeding by induction, one obtains that

uk(n, t) ≤ vk(n, t) for every k ∈ N. (4.15)

Taking the limit of (4.15) as k → ∞, we get that u(n, t) ≤ v(n, t) for all t > 0 and n ∈ Z and the proof of
the corollary is finished. �

Next, we give the following comparison result, which extends [24, Corollary 3.1].

Corollary 4.4. Assume the hypothesis of Theorem 4.2. Let u, v ∈ C(R+,Lγ) be such that u(n, t) ≥
Kβ(u)(n, t) and v(n, t) ≤ Kβ(v)(n, t) for all t > 0 and n ∈ Z. Suppose that u(n, 0) ≥ v(n, 0) for all n ∈ Z.
Then u(n, t) ≥ v(n, t) for all t ≥ 0 and n ∈ Z.

Proof. By Lemma 4.1 we have that F (x, ·) is non-decreasing for every x ∈ R and therefore

K2(u)(n, t) =Eβ,1(−((−∆d)
α + ρ)u(n, 0)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs,Kβ(u)(n, s))ds

≤Eβ,1(−((−∆d)
α + ρ)u(n, 0)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs, u(n, s))ds

=Kβ(u)(n, t),

and

K2(v)(n, t) =Eβ,1(−((−∆d)
α + ρ)v(n, 0)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs,Kβ(v)(n, s))ds

≥Eβ,1(−((−∆d)
α + ρ)v(n, 0)

+

∫ t

0

(t− s)β−1Eβ,β(−((−∆d)
α + ρ)(t− s)β)F (n− cs, v(n, s))ds

=Kβ(v)(n, t).

Proceeding by induction, one obtains that

u(n, t) ≥ Kβ(u)(n, t) ≥ K2
β(u)(n, t) ≥ ... ≥ lim

k→∞
Kkβ(u)(n, t) =: u(n, t)

and

v(n, t) ≤ Kβ(v)(n, t) ≤ K2
β(v)(n, t) ≤ ... ≤ lim

k→∞
Kkβ(v)(n, t) =: v(n, t).

Observe that both u and v are solutions of the nonlinear equation (4.5) with initial data u(n, 0) and v(n, 0),
respectively. Then, by the comparison principle (Corollary 4.3) we obtain that

v(n, t) ≤ v(n, t) ≤ u(n, t) ≤ u(n, t),

for all t ≥ 0 and n ∈ Z and the proof is finished. �

We conclude the paper with the following set of examples.
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Example 4.5 (Generalized Fisher-KPP Equation). Let r : R→ R be continuous, non-decreasing, bounded
and picewise continuously differentiable satisfying 0 < r(∞) <∞. Define

f : R× R+ → R, f(x, s) = s(r(x)− s). (4.16)

Let γ := r(∞). It is clear that f is measurable, the restriction of f(x, ·) to [0, r(∞)] belongs to C1[0, r(∞)] and
that f(x, 0) = 0 for every x ∈ R. Calculating we have that ∂sf(x, s) = r(x)−2s and ∂2

sf(x, 0)(x, s) = −2 < 0.
Hence, f(x, ·) is concave on [0, r(∞)]. Letting ρ := 3r(∞) we also have that (4.2) is satisfied. We have shown
that f satisfies all the hypothesis in Lemma 4.1. It is clear that ∂sf(x, 0) is a nondecreasing function of x.
Finally f(x, r(∞)) = r(∞)(r(x)−r(∞)) ≤ 0 and hence the condition (4.6) is also satisfied. The system (4.1)
with f given by (4.16) is the discrete generalized Fisher-KPP equation. This includes the discrete generalized
Fisher-KPP equation with delay by taking f(n− ct, s) = s(r(n− st)− s), n ∈ Z, t ≥ 0 and for some constant
c ≥ 0. The classical Fisher-KPP equation corresponds to the case where r(x) = r(∞) is constant.

Next, we consider a generalized Newell-Whitehead-Segel type equation.

Example 4.6 (Generalized Newell-Whitehead-Segel Equation). Let r be as in Example (4.5), p ≥ 1 and
define

f : R× R+ → R, f(x, s) = s(r(x)− sp). (4.17)

Let γ := r(∞)1/p. Then f is measurable, the restriction of f(x, ·) to [0, γ] belongs to C1[0, γ] and f(x, 0) = 0
for every x ∈ R. Moreover, ∂sf(x, s) = r(x)− (p+ 1)sp and ∂sf(x, s) = −p(p+ 1)sp−1 ≤ 0. Hence, f(x, ·)
is concave on [0, γ]. The inequality (4.2) is satisfied with the choice of ρ := (p + 2)γp = (p + 2)r(∞)1/p.
Hence, f satisfies all the hypothesis in Lemma 4.1. In addition we have that

f(x, γ) = γ(r(x)− γp) = r(∞)1/p(r(x)− r(∞)) ≤ 0.

Hence, (4.6) is also satisfied. It is also clear that ∂sf(x, 0) is a nondecreasing function of x. The case r ≡ 1
and p = 2 corresponds to the Newell-Whitehead-Segel equation which describes the so called Rayleigh-Benard
convection. The Newell-Whitehead-Segel equation is a well-known universal equation to govern evolution
of nearly one-dimensional nonlinear patterns produced by a finite-wavelength instability in isotropic two-
dimensional media [37, 39].

Example 4.7. Let a > 0 be a fixed constant and define

f : R+ → R, f(s) = s(a− s)(a+ s).

Then f is measurable, the restriction of f to [0, a] belongs to C1[0, a] and f(0) = 0. Moreover, f ′(s) = a2−3s2

and f ′′(s) = −6s ≤ 0. Hence, f is concave on [0, a]. Equation (4.2) is satisfied with the choice of ρ := 3a2.
Hence, f satisfies all the hypotheses in Lemma 4.1. In addition we have that f(a) = 0 and (4.6) is also
satisfied.
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